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Harmonic Axisymmetric Thick Shell Element for 
Static and Vibration Analyses 

J i n - G o n  Kim* 

School of  Mechanical and Automotive Engineering, Catholic University of  Daegu, Hayang-up, 
Kyungsan-si, Kyongbuk, 712-702, Korea 

In this study, a new harmonic axisymmetric thick shell element for static and dynamic 

analyses is proposed. The newly proposed element considering shear strain is based on a 

modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees 

for displacement field interpolation in order to enhance numerical performance. The stress 

parameters selected via the field-consistency concept, are very important in formulating a 

trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are 

eliminated by the stationary condition and then the nodeless degrees are condensed out by the 

dynamic reduction. Several numerical examples confirm that the present element shows 

improved efficiency and yields very accurate results for static and vibration analyses. 

Key Words :Harmonic  Axisymmetric Shell Element, Hybrid-Mixed Formulation, Static and 

Vibration Analyses 

I.  I n t r o d u c t i o n  

Axisymmetric shells are common structural 

elements and are found in many areas of engi- 

neering. Their use includes pressure vessels, 

cooling towers, wheels, tires and turbine engine 

components, which spans all branches of engi- 

neering. Compared to a beam or plate, a shell 

may be considered as a thin structural element 

with double curvature. The curvature has a very 

significant effect on the behavior of a structure in 

carrying loads. At the same time, it introduces 

complexity into the formulation and numerical 

calculation. Thus the development of suitable finite 

elements for shells of revolution has been the 

subject of intensive research interest. Up till now, 

many techniques on a displacement-based element 

have been proposed including the selective/ 
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reduced integration element method (Zienkiewicz 

et al., 1977 ; Noor and Peters, 1981 ; Stolarski and 

Belytschko, 1983), the anisoparametric interpola- 

tion element method (Tessler and Spiridigliozzi, 

1988), the strain-based element (Ryu and Sin, 

1996), and the field-consistent element method 

(Prathap and Ramesh Babu, 1986 ; Ramesh Babu 

and Prathap, 1986). As an alternative to the 

displacement-based elements, the mixed or hybrid- 

mixed finite element method, which is the Hel- 

linger-Reissner variational principle, has been 

continuously developed (Saleeb and Chang, 

1987 ; Kim and Kim, 1996 ; Kim and Kim, 2000 ; 

Kim and Kang, 2003). 

In the present work, a new and more accurate 

hybrid-mixed C O harmonic axisymmetric shell 

element for static and vibration analysis is 

presented based on the modified Hellinger- 

Reissner variational principle (Steele and Kim, 

1993). A conventional Hellinger-Reissner varia- 

tional principle for general shells has five dis- 

placements and eight stress resultants, but the 

modified Hellinger-Reissner variational principle 

employed in this work has only five displace- 

ments and five stress resultants; the circum- 
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ferential stress resultants that cannot be pre- 

scribed at the shell edge are removed at the final 

tbrm of the modified principle. In addition to the 

interpolating functions associated with nodal dis- 

placements and stress parameters, this element 

uses bubble functions corresponding to nodeless 

displacement degrees of freedom. The introduc- 

tion of the nodeless degrees and the consistent 

stress parameters serves to greatly improve nu- 

merical results tbr bending responses and higher 

vibration modes, as well as to remove the locking 

phenomena. For computational efficiency, the 

stress parameters are substituted by the dis- 

placement variables at the element level. Further- 

more, the additional nodeless degrees of freedom 

are also eliminated in the element equation of 

motion through the Guyan reduction (Guyan, 

1965), and thus the number of the final system 

equations is greatly reduced. 

Slightly increased computational efforts due to 

the use of the nodeless degrees of freedom are 

needed at the element level. However, these efforts 

can be well compensated by the substantially 

improved performance. Several numerical exam- 

ples show that the present element yields very 

accurate results for the static and free vibration 

analysis of various axisymmetric shell problems. 

2. Variational Principle 

The meridional curvature and the normal com- 

ponent of the circumferential curvature are 

denoted by 1 / r l = d g / d s  and 1 / r~=s in  q~/r re- 

spectively, and the arc-length of the meridian of 

the mid-surface is expressed by s (Fig. 1). The 

tangential displacements, u and v, are in s and 0 

directions respectively, while w is the normal 

deflection. By assuming that the normal deflection 

is constant across the thickness of the shell, i.e., in 

S ~ direction shown in Fig. 2, the displacements are 

taken to be in the form of 

/w}{u 1 U =  u = u,+S'Xs , 

v uo + PZo 

(1) 

where Un is the measure of  the normal deflection 

of the mid-surface, and Us and u0 indicate dis- 

z 

s 

Fig. 1 Geometry of an axisymmetric shell 

x/ 

Fig. 2 

X3 

X2 

The three-dimensional view of the r - z  plane 

containing a meridian with arc length s and 

an outward normal S ~. The angle 9 is mea- 
sured from the axis of revolution to the nor- 

mal 

placements at the mid-surface in s and 0 

directions respectively. Zs and Ze are the measures 

of the rotation of  the normal to the mid-surface. 

Assuming time-harmonic motion with the nat- 

ural angular frequency co and integrating the 

variation of the kinetic energy over the volume at 

a fixed time, the Modified Hellinger-Reissner 

functional for axisymmetric shell can be written 

a s  

where p is the mass density and LR is the energy 

density(refer to the reference (Kim and Kim, 
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2001) for the details). It is possible to write the 

energy density only in terms of  the quantities that 

can be prescribed at the shell edges, namely the 

displacement vector D and the stress resultant 

vector F defined as 

~8 

Xo 

D =  Un = 

Us 

720 

(n) 
Zs cos nO 

(n) 
:Zo s in  nO 

(n) 
Un COS nO ; 

(n) 
Us cos nO 

u(e ") s in  n 0 

{ M~ (") c o s  nO 
M(~ ) s in  nO 

= O(~') cos nO 
~ " )  cos nO 
nr(n) S i l l  n O  2 V$0 

(3) 

in which the quantities superscribed with n are 
the Fourier coefficients of the nth circumferential 
harmonic. The variation with respect to the 
circumferential angle, O, can be integrated over 
the circumference, and then the circumferential 
harmonics are all uncoupled. Thus, integrating 
~IIn over O, the final form of the modified mixed 
variational principle for the nth circumferential 
harmonic becomes 

n s2 n 1 s2 t12 

k - 2  for n - 0 ,  k = l  for n > l  (4) 

r(n) for the nth The modified energy density ~uR 
harmonic is given as 

L~e)=F(,), .  dD t~) +D(,), .E(~).F(,)  
ds 

(5) 
1 F(,)~. C. F( , )+ID(~)~.  K(,).D(~ ) 
2 

The symmetric matrices C and K (n) have dimen- 
sions of"compliance" and "stiffness" repectively. 
For  isotropic materials, the matrices E (n), C, and 
K (n) are explicitly given in Appendix. 

3. Finite Element Formulation 

In the present 3-noded finite element formula- 
tion, the displacement field variables (Xs, X0, u, ,  
Us, uo) are interpolated using the bubble function 
such as ~(1- -~  e2) in addition to the familiar 
quadratic Lagrangian polynomials. The dimen- 

sionless parameter varies from 0 to 1 in an ele- 
ment and is defined as d s = ( r g + ~ ) ' 2 d $ = l l l  
d~. The purpose of using the nodeless degrees is 
to describe the bending behavior and higher-or- 
der vibration modes of  axisymmetric shells more 
accurately. Thus, the displacements D (') in Eq. 
(5) within an element are interpolated as 

f A(n) A(n) D ( ' ) = [ N c : N h ] . t , c  ,uh }t=N.d(n) ,  (6) 

where Nc and Nh denote the matrices represen- 
ting the interpolation functions for the nodal 
d(cn)={ Zsi, Xoi, Uni, Usi, UOi }~=a.a and nodeless 
d(ff)={ ai }~1,~ degrees of freedom respectively. 

As the shell becomes extremely thin and nearly 
straight, the membrane and shear strains must 
vanish in the limits of membrane inextensibility 
and shearless deformation. These constraints yield 
unnecessary restrictions expressed by uum¢--~O 

and Xs,,ee---~O at the element level. These are 
known as spurious constraints which lead to 
membrane and shear locking. To remove the 
spurious constraints, the stress resultants corre- 
sponding to troublesome strains should be con- 
sistent quadratic interpolation functions. There- 
fore, the following form of  stress interpolation 
functions is employed. 

F ( , ) = S  (1, ~, ~ez) .B(,), (7) 

where/~tn)={ fll ..... ills }, denoting the stress para- 
meters for the nth harmonic number, are not 
continuous at the element boundary, and S is the 
matrix of the interpolation functions for stress 
resultants. 

The present hybrid-mixed element employing 
Eqs. (6) and (7) is designated by DCSQ3. This 
element is compared with a hybrid-mixed element 
DQSL3 (Kim and Kim, 1996) with quadratic- 
displacement and consistent linear-stress result- 
ant interpolation functions. A hybrid-mixed ele- 
ment DCSC3 with cubic-displacement in Eq. (6) 
and inconsistent cubic-stress resultant interpola- 
tion is also compared with the present DCSQ3 
element. These comparisons demonstrate the 
effects of the consistent stress parameters and 
nodeless degrees in hybrid-mixed formulation for 
static and vibration analyses. The characteristic of 
the elements compared in the present work are 
summarized in Table 1. 
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Table 1 The  characterist ics o f  the finite element  

models  used in the present  s tudy  

Displacement Stress 
Designation Consistency 

Approximation Approximation 

Quadratic - DQ3 Inconsistent 

Quadratic Quadratic DQSQ3 Inconsistent i 

Quadratic Linear DQSL3 Consistent 

DCSQ3 
Cubic Quadratic (present) Consistent 

Possible 
locking 

Yes 

Yes 

No 

No 

For the finite element formulation, the substi- 
tution of Eqs. (6) and (7) into equation (4) 
yields 

II<e"> = B<.>'Gdm) + d<")'Z<~)Bm) _ 1B<.>,IB<~) 
, 2 

1 (n)t (n) (n) 1 2 (n)~ (n) (n) +~d e d -TCOd M d 

where 

G=f01[S t" (Nc,+ : Nh,+)] rd$= (Gc : Gh) (9a) 

Z<"/=f0 'r (No : Nh)'E<">S [JId$ = (E~m: E~">) t (9b) 

= f 0 1 r S ' C S l ]  J d$ (9c) I 

O<"}=f0 l r  (Nc : Nh) 'K <"~ (No : Nh)[] [d~ 
(9d) 

• ~(n)~ 
~ ~ qY~i I ~=c,h 

(n )  F I  F t / 2  

M =pJo J-,2 rNtT'TNdhlJld~ (9e) 

By invoking the stationarity of II~ ") with respect 
to d (n) and ~(n) respectively, and then applying 
the Guyan reduction, the following reduced 
eigenvalue problem for free-vibration analysis, 

--(n) which is expressed only in terms of dc , can be 
obtained. 

[K ~">- (.o2M <m3 a(n)=0 ( l O) e e J u e  , 

where the condensed element stiffness matrix 
]Id(n) -,,e~'<n) and mass matrix ~,-e are given by 

K<.~-tr<.l ~(n)K<n)-'K<n) (1 la) e - -  l ~ C C  - -  l l t c h  hh hc  

M(n) __ ~ ( n )  -k- zr(n)K(n)-~M (n)lg(n)-zlg(n)  
e - - £ I I c c  l k c h  hh hh JtXhh llLhC - -  

K<n)lc(n)-~Tt/l(n ) TtM<n)lg(n)-Zii-<n ) (1 lb )  
ch XXhh  ±*Jthc - - l ¥ 1 c h  . tXhh JtXhc , 

where 

K(n) = o (G~ +s~n)) I - '  (G~+~)m+) + @~0) (12a) 
(i and j=c ,  h) 

( n ) =  1 t12 t t 

m+ pfof,,2rNiT TN/hr+ld+ (12b) 
(i and j = c ,  h) 

4. N u m e r i c a l  E x a m p l e s  

In this section, the results by the present 
DCSQ3 element are compared with those repor- 
ted in literatures for evaluating the numerical 
performance for the static and free vibration 
analyses. 

4.1 Ring-loaded cantilever pipe 
Fig. 3 shows a cantilever circular cylindrical 

shell under an axisymmetric tip load (1 lbf/in) 
along the free edge (Prathap and Ramesh Babu, 
1986). This problem has an interesting constraint 
such that the equation of equilibrium for the in- 
plane force reduces to Ns,s=O. Most axisymmetric 

1 Ib/in ,t=O.Olin. 
+ 

x I r=5in" 

E = 107psi, v=0 .3  

0.1 q'-I I~ (~ 1.9 -I-=l~ 4.0 . 3 ele 

0,1 
I =  

o o51 r~ p.8~_ 5.o _, 

f-r -l+m 
2x0.1 

2X0m05__1t~ I 10.7 1.0=t - 4.0 

=11 t " T 

Fig. 3 

8~0.1 0.25 
3xoo5u h ~l io,~j_ 2a2 ", 

"1ti r T 15+l+. 

Cantilever circular cyl indrical  shell and its 

noda l  divis ion 
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6 0  

o o  

g 
"~  30 / 3 (Quadrat ic  D isp lacement)  

: ~  ~ D Q S Q 3  (Quadrat ic-Quadrat ic)  / 

' ~  20 ~ .... I I I  D Q S L 3  (Quadrat ic-L inear)  

.'~ ..... 0 .... OCSO3  (Cubic-Quadrat ic ,  present) 
0 

10 . . . . . . .  r . . . . . . . . . .  ~ - -  
2 4 6 8 1'0 1'2 1~4 

Number of Elements 

Fig. 4 Convergence behavior for the circumferential 
stress resultant at the free edge of ring-loaded 
cantilever pipe. 

shell elements cannot satisfy this constraint due to 

the inconsistency between Ss and G0. Four nodal 

divisions using 3, 4, 7 and 15 elements are also 

shown in Fig. 3. 

Fig. 4 shows the convergence behavior for the 

circumferential stress resultant No at the free edge. 

It is clear that the hybrid-mixed element DQSQ3 

produces less accurate results due to its inconsist- 

ent stress approximation, and these results are 

equivalent to those by the standard displacement 

element DQ3. The DQSL3 element shows faster 

convergence than the DQSQ3 element. The 

DCSQ3 element requires some additional calcula- 
.[2-(n)'[~(n)-]l[~(n) 

tions to obtain ~Xch==hh "=hc in Eq. ( l la)  for 

each element. However, the results by the use of 

three DCSQ3 elements that requires only a 21- 

by-21 matrix manipulation in order to obtain the 

same accurate results as those from the use of 

seven DQSL3 elements that requires 45-by-45 

matrix manipulation. It is clear that regardless of 

the additional computational effort needed for 

DCSQ3, DCSQ3 with the additional nodeless 

degrees is more effective than other elements such 

as DQSL3 in static analysis. 

4.2 Toroidal shell under uniform internal 

pressure 

A toroidal shell under internal pressure p in 

Fig. 5 is chosen to prove the ability of the present 

elements to predict the rapid change in membrane 

resultants. The material properties and shell 

dimensions are E=10~lb / in  2, ~=0.3, t : 0 . 5 i n ,  

a : 1 5 i n ,  R : 1 0 i n  and p = l l b / i n  2. The shell 

0.5 
• Kalnins, 1964 
D Delpak, 1975 

0.4. A Babo and Prab~ap, 1986 

O . . . . . . .  present(DCSQ3) o 

• , • i • , • , i z  , . i • E . i • . 

20 40 60 80 100 120 140 160 180 

Angle 

Fig. 5 The radial displacement distribution of a 

toroidal shell 

meridian for z > 0  is discretized by 7 unevenly 

spaced DCSQ3 elements, with more elements at 

the pole. The results are compared to Kalnins' 

direct numerical integration results (1964) and 

those by Delpak's curved parametric element 

(1975), Babu and Prathap's field-consistent ele- 

ment (1986), and Kim and Kim's hybrid-mixed 

element with consistent stress parameters (1996). 

Fig. 5 compares the present result for the radial 

displacement Ur with those reported in the 

literatures. Fig. 6 shows the circumferential mem- 

brane resultant No. Eleven DQSL3 elements are 

required to obtain the results comparable to 

Kalnins' result while only seven DCSQ3 elements 

are. We note that DCSQ3 and DQSL3 predict the 

membrane resultants better than Delpak's and 

Prathap's elements: compare these results with 

Kalnins' result in Fig. 6. 

sl 

21 

Fig. 6 

o ¢ . -  \ 

• Kalnins, t964 
Delpak, 1975 ~ 

• Kim and Kim, 1996 
~ - present(DCSQ3) 

• ~]  " 4.0 " 60 " 80 " 100 " t20 " t40 " t60 " 180 

A n g l e  # 

The distribution of the circumferential stress 
resultant of a toroidal shell 
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9 0 0 0 -  - -  

8 0 0 0 ~  

7 0 0 0 -  

6 0 e 0 -  

i 

~ 5ooo- v 

~) 4000-  
:3 g . 
~- 3 0 0 0 -  

I& 

2000 - 

1 0 0 1 1 -  

Fig. 7 

Sen and Gould, 1974 
[] DOSL3(QuadratJc-Linear) 
• DCSQ3(Cubic-Quad ratic,present) 

ti ' 

i ! j '  

Circumferential Harmonic Number n 

Diff~ences between two elements' results by 
DQSL3 and DCSQ3 and the Sen & Gould's 
results in the prediction of the natural fre- 

quencies of a clamped-free cylindrical shell 
for the circumferential wave number. 

4.3 Clamped-free cylindrical shell 
The first three natural frequencies of the 

clamped-free cylindrical shell in Fig. 7 are 

obtained. The shell dimensions and material 

properties are R :101 .6mm,  L=226.786mm, t :  

1.016mm, E=2.069XlOUN/m z, ~=0.3, and p----- 

7868kg/m 3. 

The two-element results by DQSL3 and 

DCSC3 are compared in Fig. 7 with the results by 

Sen and Gould (1974) who used a displacement- 

based finite element technique. Their results were 

obtained with 6 to 12 elements depending on the 

harmonic number. A good agreement is seen 

between the two DCSQ3 element results and those 

by Sen and Gould. It should be noted that the 

adoption of higher-order interpolation functions 

and consistent stress parameters in the hybrid- 

mixed formulation yields substantially improved 

results for higher natural frequencies. 

4.4 Clamped-free hyperbolic shell 
The free vibration response of the hyperbolic 

shell as shown in Fig. 8 is considered. This 

problem was investigated numerically by Sen and 

Gould (1974) who used the finite element tech- 

nique as well as experimentally by Hashish 

(1971) who used a scale model of a prototype 

Table 2 Natural frequencies of the clamped-free 
hyperbolic shell depicted in Fig. 8 

Natural frequencies (Hz) 

Harmonic Experiment Sen and 
Numbcr n (Hashish, G ou l d  DCSQ3 DCSQ3 

1971) (1974) (6 elements) (8 elements) 

3 188 168 167.51 167.52 

4 130 130 129.86 129.83 

5 122 122.19 122.16 

6 157 143 143.10 142.86 

7 177 161 161.82 161.30 

5.64" 

16.565' 
I! 18 

Fig. 8 A hyperbolic shell model. 

hyperbolic cooling tower. A cross section is 

defined by the hyperbola equation, ( r / a )  Z (z /  
b)2= l ,  where a----4.79 and b=11.391. The mate- 

rial properties are E=0.738 X 10epsi, ~=0.3, and 

/9=0.210 X 10-31bf/in 3. In the present analysis, the 

shell is assumed to be clamped at the base and 

free at the top, while all thickness variations are 

taken into consideration. 

The results of the present results using six and 

eight elements are tabulated in Table 2 together 

with those obtained by Hashish (1971) and Sen & 

Gould (1974). It is seen from Table 2 that the 

experimental frequencies are consistently higher 

than those predicted by finite element analyses. 

This discrepancy may be attributed to the change 

in the mechanical properties of the model which 
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1.2 

O.B 

.-~ 0 .4  
iS1 

0.0 • • 
o 

-04 
0.0 012 

* Exper imen t (Hash i sh ,  1971) 

- -  p r e s e n t ( D C S Q 3 )  

/ 
i¢ 

/ 
/ 

/ 
e~  

, /  

01, 016 
z coord ,  shel l  l eng th  

(a) 

, 

n = 3, Axial  mode l  

018 1.0 

the prediction for a bending behavior and higher- 
order vibration mode by introducing nodeless 
degrees. 

It is confirmed that the introduction of addi- 
tional nodeless degrees of freedom and consistent 
stress parameters is very effective in formulating 
trouble-free hybrid-mixed elements. Several nu- 
merical examples confirm the present element's 
superior performance for both the static and 
vibration analyses. 

A p p e n d i x  

1.2. 

~) 0.8,  

E 
o* 
t~ 0.4. 

£3 
-~ o.o- - -  
.N 

E -0.4- 

z 

-0.B - 

0.0 

Fig. 9 

• Expe r imen t (Hash i sh ,  1971) 

- -  p r e s e n t ( D C S Q 3 )  / "  
/ '  

7 / 
/ 

7 
, /  

. i ~ . . . ~ t ~ / s  ~" 

n = 4, Axial mode l  

012 o'4 016 OiO ,.0 

z coord.  / she l l  l eng th  

(b) 
First mode shapes for circumferential harmo- 
nic numbers, (a) n=3  and (b) n = 4  

have not been considered in the analysis, but 
well-converged results with fewer elements are 
obtained. Fig. 9 shows the mode shape for the 
circumferential harmonic number n = 3  and n=4 .  
It is evident that even with a small number of 
elements, the present DCSQ3 is capable of  solving 
practical problems accurately. 

5. C o n c l u s i o n s  

In this study, the static and vibration analyses 
using a new harmonic axisymmetric shell element 
are performed. In developing the present elements, 
special efforts are exercised : 

-to select suitable and straightforward inter- 
polation functions for stress resultants to remove 
the spurious constraints by means of  the field 
-consistent concept ; 

-to improve the accuracy and convergence in 

The explicit form of the matrices E ("), t3, and 
K in) are given by 

r r 
n C, 
r r 

E (')= 0 0 

0 2~n 
Y 

0 _ 2~c~ 
?. 

[ d~t 2 n~t 
l ~  12 

n't 2 r z 

K I~l= E-~j 0 nr 
r ' l  /1 

0 0 

1 
C=~7= 

rl 

0 

0 rs, 
l* 

I o 

0 0 
0 0 

0 2~'(l+v) 

0 0 

0 0 

l + v s '  0 (A.1) 
rl r 

~c~ n 
r T 

n c~ 
r Y 

nr 

2 

~+sg 
$9C~ 

0 0 

0 _rs9 
tt 

c~ nc, I 

] nC~ ~4- n 2 

0 0 0 

0 0 2~(l+v) 

g 0 0 
0 1-v z 0 

0 0 20+v) 

(A.2) 

(A.3) 

with 

s~=sJn 99 ; c , = c o s  99. 

In Eqs. (A. I ) - - (A.3) ,  E and v are Young's 
modulus and Poisson's ratio, respectively, the 
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shear flexibility factor /t and the reduced thick- 

ness c are taken to be given by 

t 2 12(1+~)  C2 - 
/z= 5 ; 12(1--u  2) 
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